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Abstract

An important problem facing numerous research projects on parallelizing compilers for distributed
memory machines is that of automatically determining a suitable data partitioning scheme for a pro-
gram. Any strategy for automatic data partitioning needs a mechanism for estimating the performance
of a program under a given partitioning scheme, the most crucial part of which involves determining
the communication costs incurred by the program. In this paper, we decribe a methodology for esti-
mating the communication costs at compile-time as functions of the numbe-s of processors over which
various arrays are distributed. We also describe a strategy for making program transformations that
expose opportunities for combining of messages, leading to considerable savings in the communication
costs. For certain loops with constant dependences, the compiler can detect the possibility of pipelining,
and thus estimate communication costs more accurately than it could otherwise. These results are of
great significance to any parallelization system supporting numeric applications on multicomputers. In

particular, they lay down a framework for effective synthesis of communication on multicomputers from
I sequential program references.
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I1 Introduction

Distributed memory multiprocessors (multicomputers) are increasingly being used for providing high levels of

performance for scientific applications. These machines offer significant advantages over the shared memory

multiprocessors with regard to cost and scalabilty, however, they are also more difficult to program. Much

of that difficulty is due to their lack of a single global address space. Hence, the last few years have seen

considerable research effort [9, 10, 16, 3, 14] aimed at providing a shared name space to the programmer,

with the task of generating messages relegated to the compiler. Most of these parallelization systems ac-

cept a program written in a sequential or shared-memory language augmented with annotations specifying

j distribution of data, and generate the target program for the multicomputer.

It is widely accepted that with such parallelization systems, the most challenging step in programming

for multicomputers is determining the "right" data partitioning scheme. It is the data partitioning scheme

which determines whether or not independent computations are executed on different processors, and when

interprocessor communication is required to carry out a computation. Since the performance of a program

depends critically on the data distribution scheme, most of the parallelization systems leave it to the pro-

grammer to decide. However, the task of determining a good data distribution scheme manually can be

extremely difficult and tedious. Recently several researchers [13, 11, 2, 8] have addressed this problem of

automatically determining a proper data partitioning scheme, or of providing help to the user in this task.

Any strategy for automatic data partitioning needs a mechanism for estimating the performance of a

program to evaluate a data partitioning scheme (or some parameters related to the scheme). The most

crucial part of that involves determining the communication costs incurred while executing the program. In

this paper, we decribe a methodology for estimating the communication costs as functions of the numbers

of processors over which various arrays are distributed.

I Related Work Some of the ideas underlying our approach to estimating communication costs ar- closely

related to those developed for automatically generating communication from sequential or shared memory

language programs for multicomputers. The Kali system (10] and the Parascope system [2] p, rform analysis

of source references to determine the communication induced by the data partitioning scheme for each

loop. Li and Chen [11] introduce the notion of matching source program references with syntactic patterns

associated with aggregate communication routines to generate communication in the Crystal system. They

also define a metric based on those communication primitives to estimate communication costs. In these

systems, the support for automatic data partitioning is based on trying out different possibilities regarding
certain "standard" array partitionings, and using a performance estimation module to return estimates of

I the communication cost. The system uses these estimates to select the data partitioning scheme that leads

to the best performance.
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Motivation for this work We approach the problem of automatic data partitioning in a different man- 3
ner, and correspondingly need a slightly more sophisticated mechanism for estimating communication costs.

We deal with constraints [8], which represent only partial specifications of a data partitioning scheme. Hence, 5
we need estimates of communication costs in a parameterized form, i.e., as functions of data distribution

parameters not specified by the constraints. We do not attempt to explicitly evaluate different partitioning

schemes because such a method would be prohibitively expensive if the number of candidate schemes is U
large. Instead, we record constraints indicated by different loops in the program, and then combine selected

constraints in a consistent manner. Each constraint specifies only a few parameters pertaining to the dis- 5
tribution of an array, and the parameters left unspecified by one constraint may be selected by combining

that constraint with others specifying those parameters. We have performed a study of real-life scientific

application programs (Fortran programs taken from the Linpack and Eispack libraries and the Perfect Club

Benchmark Suite [4]), and have found the idea of using constraints to be extremely useful [7].

Different constraints may impose conflicting requirements on the distribution of various arrays. In order I
to resolve those conflicts, we associate a measure of quality with each constraint. Depending on the kind of

constraint, we use one of the following two quality measures - the penalty in execution time, or the actual 3
execution time. For constraints which are finally either satisfied or not satisfied by the data distribution

scheme, we use the first measure which estimates the penalty paid in execution time if that constraint is not 5
honored. For constraints specifying the distribution of an array dimension over a number of processors, we

use the second measure which expresses the execution time as a simple function of the number of processors.

The ideas presented in this paper were developed as part of our effort to come up with a methodology to

determine the quality measures of various constraints at compile-time. However, the results we obtain are

of great significance to any parallelization system for multicomputers, since our techniques can be applied 3
to generate communication using appropriate primitives, and also to estimate the cost of communication.

Organization of the Paper The rest of this paper is organized as follows. Section 2 describes our I
abstract machine model, how distribution functions are specified for arrays, and introduces some terms

that we shall use throughout the paper. Section 3 presents an algorithm to determine accurately when n

communication may be taken out of a loop. In that section, we also present a methodology for applying

transformations on loops to expose opportunities for combining messages. Section 4 describes how, given an

assignment statement appearing in an arbitrary number of loops (which need not be perfectly nested inside

one another), the compiler estimates the costs of communications required to carry out that computation.

The procedure for that as described in this section assumes that there is only a single reference to each array 3
appearing on the right hand side of the assignment statement. Section 5 describes how multiple references

to an array in a single assignment statement are handled. Section 6 describes how the compiler detects 3
opportunities for pipelining a given computation and modifies the estimates of communication costs to take

into account the speedup due to pipelining. Finally, conclusions along with a discussion on future work are
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presented in Section 7.

2 Background and Terminology

Distribution of arrays on target machine The abstract target machine we assume is a 2-D grid of

N1 * N2 processors. Such a topology can easily be embedded on almost any distributed memory machine. To

simply the notation describing distribution of arrays, we regard the topology conceptually as a D-dimensional

grid (D is the maximum dimensionality of any array used in the program), and later set the values of

N3 ,...,ND to 1.

We describe the distribution of an array by using a separate distribution function for each of its dimensions

[7]. Each array dimension gets mapped to a unique dimension of the processor grid (if that grid dimension

has only one processor, the array dimension is said to be sequentialized) and is distributed in a cyclic or

contiguous manner, or it may be eplicated. The distribution function chosen finally for an array dimension

conveys all of this information.

The first aspect which gets determined regarding data distribution is the alignment of array dimensions.

Two array dimensions are said to be aligned if they get distributed on the same processor grid dimension. We

describe how communication costs incurred while executing a loop are estimated, given information about

the alignment of array dimensions. Determining the quality measure of a constraint on alignment of two

array dimensions then simply becomes a matter of evaluating communication costs for the cases when the

particular array dimensions are aligned and when they are not, and taking the difference of the two. The

communication costs are expressed as functions of the number of processors on which various aligned array

dimensions are distributed, and sometimes, also of the method of partitioning, contiguous or cyclic.

Communication Primitives Our system uses array reference patterns to determine which communi-

cation routines out of a given library of routines best realize the required communication for various loops,

a notion first introduced by Li and Chen [11] for synthesis of communication. We have made significant

extensions to the ideas presented in their work, as we shall show later. We assume that the following

communication routines are supported by the operating system or by the run-time library:

* Transfer: sending a message from a single source to a single destination processor.

e OneToManyMu ticas : multicasting a message to all processors along the specified dimension(s) of the

processor grid.

e Reduction : reducing (in the sense of the APL reduction operator) data using a simple associative

operator, over all processors lying on the specified grid dimension(s).

3



Primitive Cost on Hypercube ]
Transfer(m) O(m)
Reduction(m, seq) O(m* log num(seq))
OneToManyMulticast(m, seq O(m* log num(seq))i
ManyToManyMulticast(m, seq) 0(m* num(seq))

Table 1: Costs of communication primitives on the hypercube architecture

* ManyToManyMulticast : replicating data from all processors on the given grid dimension(s) on to 3
themselves.

Table 1 shows the cost complexities of functions corresponding to these primitives on the hypercube I
architecture. The parameter m denotes the message size in words, seq is a sequence of numbers representing

the numbers of processors in various dimensions over which the aggregate communication primitive is carried 3
out. The function num applied to a sequence simply returns the total number of processors represented by

that sequence, namely, the product of all the numbers in that sequence. An important a.pect of the definition 3
of primitives other than Transfer is that the processors over which the multicast (or reduction) operation is

carried out include the processor from which multicast takes place (or the processor on which the reduced data

is placed). This definition imposes the requirement that the cost functions Reduction, OneToManyMulticast, I
and ManyToManyMulticast return a zero when the number of processors involved is one. This is a convenient

way of ensuring that any term for costs of communication among processors over which an array dimension 3
is distributed evaluates to zero when that array dimension is sequentialized. Handling this boundary case

correctly is very important since we always obtain communication-cost expressions in terms of the numbers

of processors over which those dimensions are distributed, and eventually, all except for a maximum of two
dimensions of each array are sequentialized. For communication-cost terms involving the Transfer function,

we shall show later how this boundary case is handled correctly. I
Subscript Types For establishing constraints and determining their quality measures, we limit our

attention to statements appearing in loops that involve assignment to arrays, since all scalar variables are
replicated on all processors. An array reference pattern is characterized by the loops in which tile statement

appears, and the kind of subscript expressions used to index various dimensions of the array. Each subscript 3
expression is assigned to one of the following categories:

" constant: if the subscript expression evaluates to a constant at compile time. I
" index: if the subscript expression reduces to the form cl * i + c2 , where cl, c2 are constants and i is a

loop index. Note that induction variables corresponding to a single loop index also fall in this category.

" variable: this is the default case, and signifies that the compiler has no knowledge of how the subscript 3
4 I



expression varies with different iterations of the loop.

For subscripts of the type index or variable, we define a parameter called dependence-level, which is

the level of the innermost loop on which the subscript expression depends, i.e., changes its value. For a

subscript of the type index, that is simply the level of the loop that corresponds to the index appearing in

the expression.

Dependence Information The information regarding all data dependences in a program is available to

the compiler in the form of a data dependence graph. Associated with each dependence edge representing a

dependence from statement SI to statement 52, both nested in n loops, is a direction vector (d, d2 , . •., d.),

where di E {<, -, >, <_, > , *} [15]. The direction vector describes the direction of dependence for each

loop, with d, describing the direction of dependence for the outermost loop, and successive components of

the vector describing directions for the inner loops. The forward direction "<" implies that the dependence

is from an earlier to a later iteration of the corresponding loop, "=" implies that the dependence does not

cross an iteration boundary, and ">" means that the dependence crosses an iteration boundary backwards.

The other four directions are simply combinations of these three basic directions, and are associated with

imprecision in data dependence tests. In Fortran do loops, a backward direction can occur only if there is a

forward direction in an outer loop. Another way this fact is often expressed is that every legal direction vector

has to be non-negative, where the directions "<","=", and ">" are expressed as + 1, 0 and -1, respectively.

For simplicity, the only dependences we consider in this paper are the data dependences in a program.

Control dependences can be handled by converting them to data dependences [1], or by using a different

program representation, the program dependence graph [5] instead of a data dependence graph.

3 Combining of Communication

On current multicomputers, the start-up cost for sending a message is much greater than the per-element

cost. Hence combining messages, particularly those being sent in different iterations of a loop, is an important

optimization goal in most parallelization systems for multicomputers [9, 16, 3].

Our approach to combining messages builds up on the idea of using the loop distribution transformation

[12), which has been used by other researchers [2, 6) on loops with cross-iteration dependences for achieving

the same goal. We extend that work, and show how a combination of loop distribution for completely parallel

(doalt) loops and loop permutation making a parallel loop the innermost loop enables the use of aggregate

communication primitives for as many loops as possible. First, let us see how loop distribution helps in

combining messages. Consider a loop in which a given statement computes the values of data items that

are used by another statement in the same loop, and this leads to communication during each iteration. IfI
I
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the loop can legally be distributed over these statements, the communication can now be done between the

resulting loops.

The first step taken by the compiler after building the data dependence graph is to determine for each 3
loop whether it can be concurrentized or not. A loop at level k is marked sequential if there is at least

one dependence edge between nodes representing statements in that loop that has a direction vector of

(di, d2 ,... , d.) satisfying the following properties: (i) d e {<, <, 96, *} (ii) Vi in (1, k - 1], di 0 {<, >, :}-

These conditions check for the existence of a cross-iteration dependence that it is not satisfied by the

sequentiality of an outer loop. The significance of ignoring a dependence in the ">" direction at level k 3
lies in the fact that a ">" direction can occur only when there is a "<" direction occuring at an outer level

[151. In the rest of the paper, we shall use the term "parallel loop" to mean a loop marked concurrent in 3
this step.

For each loop (say, at level k) that is marked sequential, we conceptually define a graph Gk to represent 3
the relevant part of the complete dependence graph for that loop. The nodes included in Gk are those

corresponding to statements in the body of that loop. An edge between these nodes present in the original

dependence graph is included in Gk if and only if the associated direction vector (di, d2,....., d,) satisfies the

following properties: (i) dk # ">" (ii) Vi in (1, k - 1], di j {<, >, :}. These conditions once again ensure

that any dependence that is satisfied by the sequentiality of an outer loop is ignored. The compiler identifies I

the strongly connected components in each such graph Gk "built" for a loop at level k.

Let us now consider a statement S1 of the form array-element = rhs-expression appearing inside a loop 3
at level k. Each array appearing in the rhs-expression could potentially be involved in the interprocessor

communication required to carry out this computation. In this section, we only describe how to determine

for each array whether the communication required (if any) can be taken out of the given loop. How that

knowledge helps us estimate the actual cost of communication shall be explained in the following sections.

The algorithm to determine whether communication involving an array B appearing in the rhs-expression I
can be combined (taken out of the loop) consists of the following steps:

1. If the loop is marked parallel, then return with the answer that communication can be combined. I

2. Check all the dependence edges in the graph Gk incident on the node corresponding to S1, and coming 3
from a node in the same strongly connected component as the given node. If any of these dependence

edges is due to the array B or any variable being used in its subscripts (when the subscript is of the

type variable), then the communication cannot be combined, otherwise it can be combined.

The existence of a dependence edge due to array B incident on the node for S1 implies that the values of 3
some elements of B that may be involved in communication are computed within the loop. Further, if that

edge comes from a node belonging to the same strongly connected component, the communication has to be 3
6



do i = in
do j = 2,n

A(i, j) = Y(A(i, j - 1), B(i, j - 1)) (Si)
B(i,j) = .F(A(i, j), A(i, j - 1)) (S2)

enddo
D(i) = .F(A(i, n), D(i - 1)) (S3)

enddo

Figure 1: Original program segment

done within that loop to honor the data dependence. However, if the edge comes from a node belonging to

a different strongly connected component, by distributing the loop over these components, we can take the

communication out of the loop. If there is no dependence edge in Gk due to B incident on the node, there

is no other statement in the loop that writes into an element of B before it gets used at S1. In that case,

communication involving the elements of B can be done before executing the loop. Before taking a decision

on combining communication, another condition we check for is that the value of any variable that governs

which element of B gets used in S1 should also be available outside the loop. That is the reason for our

checking the dependence edges due to such variables also in step 2 of the algorithm.

The need for step 1 arises when a parallel loop appears outside another loop that has communication

taking place inside it, or when there are intra-iteration dependences within the parallel loop. Unless the

program is transformed, each iteration of the parallel loop has communication taking place inside it. Step 1 is

based on the observation that in such cases, the program can always be transformed so that no communication

needs to be done inside the parallel loop. The two transformations that ensure such a behavior are:

1. Distribution of a parallel loop over statements constituting its body.

2. Loop permutation that makes a parallel loop the innermost loop in a perfectly nested loop structure.

It is well known that these transformations are always valid [15). After the distribution of a parallel loop

over various statements in its body (that may themselves be loops), whenever that loop surrounds another

loop that happens to have repeated communications taking place inside it, we transform the loop structure

so that the parallel loop becomes the innermost loop in that nest. Once a parallel loop has been made the

innermost loop, by distributing it whenever necessary over statements inside it, communication can be taken

out of that loop.

The usefulness of these transformations is illustrated by the program segment shown in Figire 1. The

dependence graph for this program segment is shown in Figure 2. Without any transformation, none of the

loops can be parallelized. However, in the graph G, that we build corresponding to the i-loop, the j-loop

7
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Si

(,) ,)S2 3

Figure 2: Dependence graph for the example program segment 3
doj = 2, n

do i = 1,n
A(i,j) = .F(A(i,j - 1), B(i, j - 1)) (SI)

enddo
do i= 1, n

B(i,j) = Y(A(i,j),A(i,j - 1)) (S2)
enddo

enddo
do i = 1,n

D(i) = F(A(i, n), D(i - 1)) (S3)
enddo

Figure 3: Transformed program segment I
statements and the statement S3 belong to different strongly connected components, and hence the i-loop

can be distributed over them. In the resultant perfectly nested loop structure with statements S1 and S2, 3
the i-loop is marked parallel and the j-loop is marked sequential. Hence, we transform this loop structure to

make the i-loop the innermost loop. The communication involving the A values in statement S2 still occurs

inside the i-loop. By distributing the i-loop further over statements S1 and S2, that communication canI

now be taken out of the inner loop. The final program segment corresponding to which the parallel version

incurs much lower communication overhead is shown in Figure 3. 3

II



14 Communication Costs for an Assignment Statement

For each statement in a loop in which the assignment to an array A uses values of an array B or A itself,

we express estimates of the communication costs as functions of the numbers of processors on which various

array dimensions are distributed. If the expression on the right hand side (rhs) of the assignment statement

involves multiple arrays, the same analysis is repeated for each array. In this section, we describe how

communication costs corresponding to a single reference to a rhs array are estimated. Section 5 describes

how we handle the case when the rhs has multiple references to the same array.

If the rhs array is different from the lhs array, the first task at hand is to determine which dimensions of

the two arrays should get aligned. The algorithm for that consists of the following steps. First, we match

all pairs of dimensions for which the subscripts are of the type index and both subscripts correspond to the

same loop index (indicated by identical values of dependence-level recorded with each subscript). In that

step, we also match dimensions corresponding to subscripts with the same constant value. Next, we match

dimensions for which one or both the subscripts are of the type variable, provided they have the same value

of dependence-level. The remaining subscripts are now simply paired up on the basis of the order in which

they are seen in a left-to-right scan of subscripts. If the number of dimensions in the two arrays are different,

some dimensions in the array with greater dimensionality get matched to a "missing" dimension.

4.1 Identification of Communication Terms

To estimate the communication costs associated with an assignment statement, we first identify terms rep-

resenting a "contribution" from each pair of subscripts for the aligned dimensions. Whenever at least one

subscript in that pair is of the type index or variable, the term represents a contribution from one of the

enclosing loops identified by the value of dependence-level. A loop enclosing a statement makes a contribution

to its costs even if no subscript in any array reference in that statement identifies it as the innermost loop in

which it changes its value. Once all the contribution terms have been obtained, we compose them together

using definite rules to determine the overall communication costs involved in executing that statement in

the program.

Determining these contributions to communication costs is based on the idea, proposed by Li and Chen

[11], of matching reference patterns in the program to those associated with various communication prim-
itives. We are able to handle a much more comprehensive set of patterns than those described in [11].

For contributions from a loop, we first apply the algorithm described in the previous section to determine

whether communication can be taken out of the loop. For cases when that can be done, Table 2 lists the

terms contributed by the pair of subscripts corresponding to aligned dimensions. We assume that all loops

have been normalized, i.e., they have a stride of one, and that each loop index used as a subscript in an array

9



• I

LHS RHS Commn. Term Type Parameters 1
i i SizeChange d = nlN :
i i± C (i) SizeChange d- ni= Nn

(ii) (N, > 1) Transfer d = cl
i vari ManyToManyMulticast d = ni/Ni, p = NI
vari i ManyToManyMulticast d = nI/Ni, p = N1

vari vari ManyToManyMulticast d = njINt, p = Ni
i or vari cl or missing OneToManyMulticast d = 1, p = Ni
cl or missing i Reduction, or d = ni/Nl, p = Ni

Transfer product = Ni - 1, d = ni/Ni
c, or missing vari Reduction, or d = nI/Nt, p = Nt

Transfer product = N - 1, d = ni/Nt
i or vari j or vary ManyToManyMulticast d = nI/Ni, p = Nr 3

Table 2: Terms for Aggregate Co. ,rication

reference varies so as to sweep over the entire range of elements along that dimension. The selection of the

communication primitive used in a communication term is based on the kind of subscripts appearing in the 3
left hand side (lhs) and the right hand side (rhs) references. We use i and j to denote different loop indices,

cl and C2 to denote different constants; vari and vary represent subscripts of the type variable with their

dependence-level values corresponding to loops with indices i and j respectively. In the entries for parameters m
of various communication terms, ni represents the loop range, and N, represents the number of processors

on which the aligned pair of array dimensions is distributed. The parameter d denotes the message size, 3
and p denotes the number of processors involved. Most of the entries for communication terms indicate

the primitive to be used. SizeChange, however, is not a communication primitive, it is merely a term that

modifies the data size parameter of other primitives when the overall communication cost is determined from

various contributing terms.

For a subscript in the rhs reference varying in a loop, if there is no matching array dimension in the lhs i
reference, or if the corresponding subscript on Ihs is a constant, the choice of the communication primitive

depends on whether the rhs operands are involved in a reduction operation. In case of a reduction operation. 3
the necessary communication may be carried out using the Reduction routine rather than multiple Transfers.

which would be more expensive. 3
Whenever the subscript is of the type variable (i.e., unpredictable at compile time), and yet communi-

cation can be taken out of the loop, we assume that communication is carried out based on the following

philosophy: each processor, before executing the loop, sends all the values that might be needed by the

destination processor, even though at that time it is not known which values would actually get. used. For l
instance, consider the following loop:

I
10 I
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LHS RHS Comma. Term Parameters

i None not applicable

i i__-__Transfer product = c, * (Ni - 1), d = 1
i var or cl or missing Transfer product = ni, probability = (1 - 1/NI), d = 1
vari vari or i or cl or missing Transfer product = i, probability = (I - I/.NI), d = I

cl or missing vari or i Transfer product = ni,probability = (1 - 1/N), d = 1

Table 3: Terms for Repeated Communication

LHS RHS Comma. Term Type Parameters

cl or missing C2 or missing Transfer probability = 1 - lIN 1 , d = 1
cI Cl None not applicable

Table 4: Terms for Loop-Independent Communication

doi= 1, n

A(i) = B(D(i))

enddo

If each processor on which array B is distributed sends the entire section it owns to all the processors on

which A is distributed, repeated communication inside the loop can be avoided even though the D(i) values

are unknown at compile time. Such an approach has an obvious disadvantage that it may lead to excessive

wastage of memory on processors. In case memory space is at a premium, we may instead choose to carry

out communication inside the loop, so that each processor receives only the values that it actually needs.

Table 3 describes the terms contributed by loops when communication has to be done repeatedly inside

them. Many entries corresponding to the term for Transfer routine have a parameter probability associated

with them. This parameter estimates the probability of the source and the destination processors for the

intended Transfer routine being different. For simplicity, the compiler assumes that any two arbitrary

elements along a given array dimension belong to the same processor with a probability of 1/N[, where

N1 is the number of processors on which that array dimension is distributed. Hence, if the value of one

of those elements is needed by the processor holding the other element, the probability that interprocessor

communication is required is 1 - 1/Nt. This elegantly takes care of the case N, = 1, since the term for

interprocessor communication vanishes when the array dimension is sequentialized.

Table 4 describes the terms contributed by a pair of subscripts corresponding to aligned dimensions.

when both the subscripts are constants, and hence loop-independent.

11
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do il = 1,n 1  I

do i = Lni 3
do i1+1 = 1, nt+l

do in = 1, n,

S,

Figure 4: Statement involving communication I
4.2 Combining of Communication Terms

We have shown in the previous section that by moving the parallel loops to inner levels, we can always I
ensure for any statement that each loop from which communication can be taken outside is relatively inner

to a loop which has communication taking place inside it. Consider the statement nested inside loops shown

in Figure 4. All loops at levels I + 1 to m are those from which communication can be taken outside, while

loops at levels 1 to I are those which have communication taking place inside them. We shall now describe 3
how the communication costs involved in executing that statement are determined from the communication

terms obtained for various loops and for the loop-independent subscript pairs.

Aggregate Communication We first determine the costs associated with calls to various aggregate

communication primitives contributed by the loops at levels 1 + 1 to m. These calls get placed inside 3
the loop at level 1, just before entering the loop at level I + 1. Any terms coming from different loops

that use the same primitive are combined as shown in Table 5. In the entries for the resultant term,

the operation "o" represents the concatenation of sequences. We distinguish between a SizeChange term

occurring by itself and one appearing in conjunction with a (conditional) Transfer primitive by using the

superscripts 1 and 2, respectively, with those terms. Following the combination shown in Table 5, let the 3
remaining terms be: SizeChange'(d 1 ), SizeChange 2 (d2), Transfer(c 1 ), ... , Transfer(c/), Reduction(d 3 . seq3),

OneToManyMulticast(d 4 , seq4 ), ManyToManyMulticast(d 5 , seqs). When these terms are combined, the data

size associated with each primitive is modified to take into account the number of elements along each array

dimension held by a processor participating in communication. The order in which calls to these primitives

are placed is significant [11] in that it affects the data sizes involved in communications. The first routine 3
invoked is Reduction, because that leads to a reduction in the size of data for the remaining communication

routines. Following that we have calls to all the Transfer routines. The ManyToManyMulticast operation gets 3
performed after that; it leads to an increase in the amount of data held by each processor due to replication.

Finally, the data is multicast using the OneToManyMulticast routine. Hence, the sequence of calls to various 3
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Terml Term2 Resultant Term

SizeChange' (dl) SizeChange' (d2 ) SizeChange' (d, * d2 )
(Ni - 1)* Transfer(di) (N 2 - 1)* Transfer(d 2) (NI * N2 - 1)* Transfer(di * d2 )

SizeChange (dl), SizeChange'(d 2 ), SizeCh (di * d2 ), (NI > 1 & N2 > 1) Transfer(c, * c2),
(Ni > 1) Transfer(ci) (N 2 > 1) Transfer(c2) (NI > 1) Transfer(ci * d2), (N2 > 1) Transfer(c2 • di)
(N1 - 1)* Transfer(di) SizeChange ' (d2 ), (N1 - 1) * Transfer(di * d2 ), SizeChange 2(d2)

(N 2 > 1) Transfer(c 2 ) (N2 > l)Transfer(c 2 * dl)

Reduction(di, seql) Reduction(d 2 , seq2) Reduction(di * d2 , seql o seq2)
ManyToManyMulticast(dl, seql) ManyToManyMulticast(d2, seq2) ManyToManyMulticast(dl * d2 , seqi o seq2)
OneToManyMulticast(di, seql) OneToManyMulticast(d2, seq2) OneToManyMulticast(di * d2 , seql 0 seq)

Table 5: Combining of Terms with Identical Communication Primitives

communication routines assumed to be inserted for the purpose of estimating costs is: Reduction(d 1 * d2 * d3 *

d 4 *d5, seq3), Transfer(d, *cl *d4*ds), ..., Transfer(d, *ci*d 4 *ds), ManyToManyMulticast(d *d2 *d4 *d5 , seqS),

OneToManyMulticast(d * *d4 * d * num(seqs), seq4). While we have shown how to handle a completely

general case when terms corresponding to all the primitives may be present, actual reference patterns in

loops are expected to involve composition of much fewer primitives at a time.

Repeated Communication As shown in Table 3, the terms contributed by the loops at levels 1 to I

consist of multiple Transfers of one of the following two kinds - regular Transfers involving data elements

lying on the "boundaries" of regions allocated to processors, or probabilistic Transfers, namely those with a

certain probability associated with them. The overall contribution to communication costs made by all the

loops is determined as follows:

1. The costs due to all the aggregate communication routines determined in the previous step are mul-

tiplied by the product of the outer loop ranges, i.e., by the quantity n, * n2 * ... * n1. This is done

because the calls to all those routines are placed inside the loop at level 1, and the outer I loops are

executed sequentially.

2. All the probabilistic Transfer terms contributed by the loops at levels 1 to I are combined into a single

such term multiplied by the product n1 * n2 * ... * n1 . The probability associated with the overall

term is computed as the union of probabilities attached to the individual terms. Let there be k such

terms originally (k < i) with probabilities 1 - 1/N,, .... .1 - 1/Ni,. The probability associated with

the overall Transfer term is set to 1 - v,.., The data size for the Transfer routine is set to t lie
data size for the last aggregate communication primitive called (if any) just before entering the loop
at level 1 + 1. If there is no call to any aggregate communication primitive, the data size is set to

the value given by the SizeChange' term (if any), otherwise it is set to the default value of 1. Each

regular Transfer term contributed by a loop remains separate from the probabilistic Transfer term.

The product of such a term is multiplied by the range of all the other I - I loops, and its data size is

13
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I
also set according to the rule described above.3

Loop-Independent Communication As shown in Table 4, each term contributed by a pair of different

constants appearing in matching subscripts consists of a probabilistic Transfer. These terms are combined

among themselves and with the probabilistic Transfer terms (if any) contributed by loops at levels 1 to 1, in

the same manner as described above, to yield finally a single Transfer term.

Example We now present an example to show how we obtain an estimate of the overall communication 3
costs by combining individual communication terms. Consider the program segment shown below:

doj = 1,n U
do i = 1,n

A(i, j, 4) = F(B(i, 1,4), C(i, j), D(i, j, 4)) i
enddo

enddo 3
Let Nt, N, and NK denote the number of processors on which the three dimensions of the array A are dis-

tributed. The terms contributed by the reference to B are SizeChange l (n/Nj) and OneToManyMulticast(1, (NJ)),
which get combined to give the communication cost as OneToManyMulticast(n/N, (NJ)). The reference to

the array C leads to the terms SizeChange(n/Nj), SizeChange 1(n/Nj), and (1- 1/NK) *Transfer(1). These 3
terms combine to give the cost as (1 - 1INK) * Transfer(n 2 /(Nj * NJ)). The reference to the array D leads

to the terms SizeChange'(n/Nj) and SizeChange'(n/Ni), which give no contribution to the communication

cost. Hence, the overall expression for the communication costs for this program segment is

Communication cost = OneToManyMulticast(n/Nj, (NJ)) + (1 - 1/NK) * Transfer(n 2 /(N 1 * N,)) 3
It is worth noting that the expressions for communication costs are determined assuming that proper align-

ment of array dimensions has been done. To determine the quality measures for the constraints on align- 3
ment, we simply determine the communication costs when alignment is not done that way. and subtract

the original communication costs from these costs. For instance, if the first and second dimensions of D

are aligned respectively with the second and the first dimension of A, the communication terms contributed I
are ManyToManyMulticast(n/Ni, (Nt)), and ManyToManyMulticast(n/Ni, (N,)). These terms when com-

bined indicate a cost of ManyToManyMulticast(n 2/(Nj * N,), (N1 , N,)), which is also the quality measure i

for the constraint on the proper alignment of those dimensions, since the communication cost for the case

when those dimensions are properly aligned is zero. 3
As mentioned earlier, the results obtained in this section are based on the assumption that each loop index

used as a subscript in an array reference varies so as to sweep over all the elements along that dimension. Our 3
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approach does not break down when this assumption does not hold, only the expressions involved become

more complex. The parameters for data size and the number of processors get modified, the values of these

parameters now become functions of the method of partitioning, whether it is contiguous or cyclic. We have

omitted these details for simplicity.

5 Multiple References to an Array

So far, we have seen how to estimate the communication costs corresponding to a single reference to an

array in the rha expression of the assignment statement. We now describe how multiple references to the

same array in the rhs expression are handled. All such references are partitioned into equivalence classes

of isomorphic references. Two array references are said to be isomorphic if the subscripts corresponding to

each array dimension in those references are of the same type, and have the same value of dependence-level

associated with them. For instance, B(i, 1) and B(i, 2) are isomorphic references, while B(i, j), B(j, i) and

B(1, j) are all mutually non-isomorphic. The communication costs pertaining to all isomorphic references in

a given class are obtained by looking at the costs corresponding to one reference and determining how they

get modified by the adjustment terms from the remaining references. The steps described in the previous

section are applied for only one reference in each class after determining the adjustment terms given by the

remaining references.

Table 6 shows how the terms contributed by matching subscript pairs from a given rhs array reference

(and the Ihs array reference) get modified in the presence of another isomorphic reference on the rhs. Terms

corresponding to the subscripts that are exactly identical in the isomorphic references do not undergo any

change. We distinguish between the cases when communication corresponding to the references can, and

cannot be taken out of the loop by referring to the terms as corresponding to aggregate or to repeated

communication. An entry "X" in the table denotes an arbitrary entry, implying that it does not matter

what that entry is. While describing the modified communication term, we refer to the original term

corresponding to the first rhs reference as Termi. The modified terms are combined using the same procedure

as that described in the previous section, thus we obtain estimates of communication costs involving all the

isomorphic references. The procedure is repeated for each class of isomorphic references.

IAs an example, consider the loop shown in Figure 5. We have two pairs of isomorphic references on the

rhs, B(i - 1,j) and B(i + 1,j), and B(i,j - 1) and B(i,j + 1). The first pair yields the communication

I terms SizeChange 2(n 1/Ni), 2 * (N > 1) Transfer(l), and SizeChange'(n 2 /N), which get combined to

give the communication cost as 2 * (NI > 1) Transfer(n 2/Nj). From the second pair, we get the terms

SizeChangel(n,/Nt), 2*(N > 1) Transfer(l), and SizeChange 2(n/Nj), combining which we get 2*(NJ > 1)

Transfer(n 1/Nj) as the communication cost. Thus the overall expression for communication costs involving

I
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[ LHS I RHS1 [I'IHT Original Term1  Modified Term(s)
i i + cl i - c2 Agg: (NI > 1) Transfer(ci) Agg: Term1, (Nt > 1) Transfer(c2)

i _ic_ igRep: cl * (NI - 1)* Transfer() Rep: (Cr + C2) * (Ns - 1)* Transfer( )
+ ic, i+ C2 Agg: (N1 > 1) Transfer(ci) Agg: (N1 > 1) Transfer(max(ci, C2 ))
(i - cI) (i - C2) Rep: cl * (N - 1)* Transfer(1) Rep: max(cl,c 2 ) * (N - l)* Transfer(1)

X varli var2, Agg: X Agg: Term,
Rep: X Rep: 2 *Term,

X c1  C2 X Term,, (1 - 1/N)* Transfer(l)

Table 6: Modification of terms for multiple references I
doj = 2,n 2 - 1

do i = 2, nj - 1
A(i,j) = .F(B(i - 1,j), B(i,j - 1), B(i + 1,j), B(i,j + 1))

enddo
enddo

Figure 5: Multiple references to an array 3

the given program segment is: 3
Communication cost = 2 * (N1 > 1)Transfer(n 2/Nj) + 2 * (Ni > 1)Transfer(n/Ni)

It is interesting to see that the above expression captures the relative advantages of distribution of the array

B (and also A) by rows, columns, or by blocks for different cases corresponding to the different values of n, 3and n2.

6 Detection of Pipelining I

The procedure described in the preceding sections generates reasonably good estimates of communication 3
costs for loops from which communication can be taken outside. However, when communication takes place

inside loops due to dependences, the estimates are often overly conservative. The primary reason for that

is the assumption that all iterations of a loop with cross-iteration dependences must be completed before

any further computation can be done. In practice, it may well happen that a processor executing the earlier

i~crations of the loop is able to proceed with other computation while the remaining iterations of that loop 3
are being executed on other processors. An important such case is the pipelining of an outer loop when

successive iterations of the outer loop can be started without waiting for all the iterations of the inner loop 3
to finish. We detect such opportunities (for pipelining) at compile-time in order to generate more accurate

cost estimates. 3
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do .-=2, ni
do i = 2, n2

D(i) = .F(D(i - 1)) (Si)
A(i,j) - F(B(i, j), D(i)) (S2)

enddo
I enddo

Figure 6: Example to illustrate pipeliningI
We restrict our attention to the simple but frequently occurring case of loops having constant dependences

between statements. A constant dependence is one for which the associated dependence distance vector is

a constant. Consider the program segment shown in Figure 6. There are dependence edges from statement

S1 to itself with distance vectors (0, 1) (flow dependence), (1,-1) (anti dependence), and (1,0) (output

dependence). There is an edge from S1 to S2 with distance vector (0, 0) due to flow dependence involving

array D, and another edge with vector (1, 0) due to anti-dependence from S2 to S1. Due to the dependence

from S1 to itself, communication cannot be taken out of either of the loops. However, the given code segment

lends itself easily to pipelining; we need not wait for all the iterations of the inner loop to finish before the

next iteration of the outer loop is started. Hence, it would not be accurate to multiply the communication

costs involved in executing the inner loop by the range of the outer loop. We first describe our simple

approach for detecting the possibilities of pipelining and modifying the communication cost estimates, and

then illustrate it for this example.

The algorithm to decide whether successive instances of an inner loop (Lk) at level k corresponding to

different iterations of an outer loop (Lt,-1) at level k - 1 can be pipelined, consists of the following steps:

1. Examine the graph Gk-I constructed earlier as described in Section 3. Identify the set of nodes that

belong to the same strongly connected component as the one containing nodes corresponding to all the

statements inside loop Lk.

2. Examine all edges between the nodes identified in step 1. Let (d1 , d2.  d,), (k < n) denote the

direction vector associated with an edge. If for every edge, either dk . "=", or all dependences

corresponding to that edge have a constant distance vector, conclude that pipelining can be done.

.Further, if pipelining can be done, for all backward dependences (dependences in the ">" direction)

at level k, determine the maximum dependence distance at that level, and call it ck. If there is no

backward dependence at level k, set the value of ck to 0.

IStep 1 narrows down the set of statements examined in the outer loop body to those over which loop

distribution cannot be carried out any further. Step 2 checks for the regularity of communications due to

I
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dependences inside loop Lk to determine whether computations can be pipelined. In the event of pipelining, 3
if there is a dependence from a later iteration (say, i2 ) of the inner loop to an earlier iteration (say, i1 ) of

the same loop corresponding to a later iteration of the outer loop, the difference between i2 and il must be 3
bounded by a constant. That constant is determined in Step 2 as ck; it signifies that successive iterations

of the outer loop can be started after waiting for only ck + 1 iterations of the inner loop to finish, thus I
permitting an overlapping of computation.

Once the possibility of pipelining the execution of instances of loop Lk inside loop Lk- has been rec-

ognized, the steps determining how the overall costs for loop Lk-1 are computed from the communication

terms are modified as follows:

1. The costs due to the aggregate communication routines are multiplied by nk + (ck + ) * (nk-1)

rather than nk * nk- 1. Let the time for aggregate communications taking place during one iteration

of the loop Lk denote one unit of time. The communications associated with the first instance of the

inner loop Lk see a full latency of nk time units, whereas those associated with the remaining ni - 1

instances of that loop see a latency of ce + I time units each. 3
2. The product of the Transfer term contributed by loop Lk is not multiplied by nk-i, rather we add

( L- r;J+1)*(n -l-1) to it to get the product for the final Transfer term. Each Transfer corresponding 3
to the dependence carried by loop Lk takes place across the "boundary" of block of elements assigned

to a processor, and hence takes place after every blockL, iterations of Lk, where blockk is the block size

of distribution of the array dimension being indexed in that loop. Before starting a new iteration of

the loop Lk- 1, since each processor has to wait for ck + 1 iterations of the loop Lk to get over, it is able

to initiate a new Transfer only after waiting for (Lb'cikij + 1) Transfers corresponding to the previous 3
iteration of LkiI to be over.

It may be noted that when the dependence distance ck is large, the communication costs are higher 1
because we need to wait for a larger number of iterations of the inner loop to finish before starting the

next iteration of the outer loop. In the limiting case when ci takes the value ni - 1, we need to wait.

for all iterations of the inner loop to finish, and our expression reduces to the original expression (without

pipelining) for communication costs. 3
Let us now return to the example shown in Figure 6. The i-loop gets distributed over S1 and S2, but the

j-loop cannot be distributed. Let N1 and N2 denote respectively the number of processors over which the first 3
and the second dimension of the array A are distributed. The communication term associated with statement

S1 contributed by the i-loop is (NI - 1) * Transfer(l). Without taking pipelining into account, the overall

communication cost estimate for executing S1 would be n1 *(N1 - 1)*Transfer(1). For statement S2, the i-loop

contributes the term SizeChange'(n 2 /Ni), while the j-loop contributes the term n1 *(1- 1/N2 )*Transfer(l).
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These terms when combined according to our rules yield an estimate of ni * (1 - 1/N 2) * Transfer(n 2 /N).

Now we explain how the detection of pipelining changes these estimates. First consider the i-loop over S

which appears inside the j-loop. The only node we see in Step 1 of our algorithm is the node corresponding

to Si. The dependences associated with the edge from S1 to itself do satisfy all the conditions of Step 2,

and we conclude that pipelining can be done. The only backward dependence is the anti-dependence with

the distance vector (1, -1), hence we set C2 to the value 1. Our modified procedure now estimates the

communication costs associated with SI to be (n, - I + N, - 1) * Transfer(1), rather than a conservative

ni * (Ni - 1) * Transfer(1). The i-loop over S2 does not involve any communication, so there is no need to

check for pipelining.

7 Conclusions and Future Work

We have presented a methodology for estimating the communication costs at compile-time as functions of

the numbers of processors over which various arrays are distributed. We have also developed a strategy

for making program transformations to create more opportunities for taking communication out of loops,

which can lead to considerable savings in communication costs. Finally, we have described a procedure for

detecting when a loop with regular dependences may be pipelined, and how the estimates of communication

costs are modified to take into account the speedup due to pipelining.

This work has been done as part of the development of a system to perform automatic data partitioning on

multicomputers [7]. Our system shall generate annotations specifying how arrays being used in a program

should be distributed on the processors of a specific machine. There are a number of compilers being

developed [9, 16) that accept a sequential program augmented with such annotations, and generate the

target parallel program for the distributed memory machine. Clearly, our estimates of communication costs

guiding the automatic data partitioning system would be useful only if the actual compiler goes through

a similar analysis for generating communication as the analysis we go through for estimating it. On the

other hand, our results have interesting implications for how the generation of communication should be

done by such compilers to reduce the communication overheads. We are currently exploring how synthesis of
communication can be guided by the techniques we have developed for identifying the primitives that best

realize the communications involved in carrying out a given computation.

We have used a number of simplifying assumptions in our work that need to be relaxed in order to

build a truly automated system for handling this task. So far, we have assumed that the loop bounds

and the probabilities for executing various branches of a conditional statement become "known" eventually

(the values of loop bounds may be determined by making the user specify the values of certain critical

parameters interactively or through assertions, and the compiler may simply guess the probabilities associated
with various conditional statements). In the future, we plan to use profiling to supply the compiler with
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information regarding how frequently various basic blocks of the code are executed. Our system also needs 3
to recognize opportunities for further optimizations regarding generation of communication [9], such as

eliminating redundant messages via liveness analysis of array variables, and combining messages consisting

of elements of different arrays into a single message whenever possible.

These issues do not undermine the applicability of our approach. They simply indicate the need for 3
further research in this area so that the ideas we have presented can be augmented with other techniques to

finally obtain a system performing automatic parallelization of programs on multicomputers. 3
References

[1] J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren. Conversion of control dependence to data

dependence. In Proc. 10th Annual ACM Symposium on Principles of Programming Languages, pages

177-189, January 1983.

[2] V. Balasundaram, G. Fox, K. Kennedy, and U. Kremer. An interactive environment for data partitioning 3
and distribution. In Proc. Fifth Distributed Memory Computing Conference, Charleston, S. Carolina,

April 1990.

[3] M. Chen, Y. Choo, and J. Li. Compiling parallel programs by optimizing performance. The Journal of

Supercomputing, 2:171-207, October 1988. 1
[4] The Perfect Club. The perfect club benchmarks: Effective performance evaluation of supercomputers.

International Journal of Supercomputing Applications, 3(3):5-40, Fall 1989. 3
[5] J. Ferrante, K. J. Ottenstein, and J. D. Warren. Program dependence graph and its use in optimization.

ACM Transactions on Programming Languages and Systems, 9(3):319-349, July 1987.

[6] M. Gerndt. Updating distributed variables in local computations. Concurrency - Practice & Experience,

2(3):171-193, September 1990. 3
[7] M. Gupta and P. Banerjee. Demonstration of data decomposition techniques in parallelizing compilers

for multicomputers. To appear in IEEE Transactions on Parallel and Distributed Systems. 3
[81 N1. Gupta and P. Banerjee. Automatic data partitioning on distributed memory multiprocessors. In

Proc. Sixth Distributed Memory Computing Conference, Portland, Oregon, April 1991. (To appear). 3
[91 S. Iliranandani, K. Kennedy, and C. Tseng. Compiler support for machine-independent parallel pro-

gramming in Fortran D. Technical Report TR90-149, Rice University, February 1991. To appear in .1. 3
Saltz and P. Mehrotra, editors, Compilers and Runtime Software for Scalable Multiprocessors. Elsevier.

1991. 3
20 U



[10] C. Koelbel and P. Mehrotra. Compiler transformations for non-shared memory machines. In Proc. 198g

International Conference on Supercomputing, May 1989.

[11] J. Li and M. Chen. Generating explicit communication from shared-memory program references. In

Proc. Supercomputing 'go, New York, NY, November 1990.

[12] D. A. Padua and M. J. Wolfe. Advanced compiler optimizations for supercomputers. Communications

of the ACM, 29(12):1184-1201, December 1986.

[13] J. Ramanujam and P. Sadayappan. A methodology for parallelizing programs for multicomputers and

complex memory multiprocessors. In Proc. Supercomputing 89, pages 637-646, Reno, Nevada, November

1989.

[14] M. Rosing, R. B. Schnabel, and R. P. Weaver. The DINO parallel programming language. Technical

Report CU-CS-457-90, University of Colorado at Boulder, April 1990.

[15] M. Wolfe and U. Banerjee. Data dependence and its application to parallel processing. International

Journal of Parallel Programming, 16(2):137-178, April 1987.

[16] H. Zima, H. Bast, and M. Gerndt. SUPERB: A tool for semi-automatic MIMD/SIMD parallelization.

Parallel Computing, 6:1-18, 1988.

I
I
I
I
I
I
I
I

21I


